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Abstract

In this note we present a new, simple proof of the law of iterated logarithm for minima of uniform

random variables. We also prove new extensions of the Borel-Cantelli Lemma.

Keywords: Borel-Cantelli Lemma, partial minima, lower class sequence, Markov sequence of

evens, increasing events

1. Introduction

Let X,X1, X2, ¨ ¨ ¨ be independent identically distributed random variables, and let Wn “

mintX1, ¨ ¨ ¨ , Xnu. Following the terminology attributed to Paul Lévy, we say that a sequence

of positive numbers, say tvnu, is said to be a lower class sequence for Wn if the event tWn ě vnu

occurs infinitely often with probability one. A contribution of these notes is a new, simple proof of

the following series characterization criterion for such sequences.

Note: Throughout the rest of the paper we write log2 “ log log, and, unless otherwise stated, all

limits are to be interpreted with respect to n, as nÑ `8.

Theorem 1. Let X1, X2, ¨ ¨ ¨ , Xn be independent and uniform random variables on p0, 1q, and let

Wn “ mintX1, ¨ ¨ ¨ , Xnu. Let vn “ cn
n

be a sequence of positive real numbers, with vn non-increasing

for all sufficiently large n.

If lim inf
cn

log2 n
ě 1, then
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P pWn ě vn i.o.q “

$

’

&

’

%

0 if
ř`8

n“1 P pWn ě vn, Wn`1 ă vnq ă `8

1 if
ř`8

n“1 P pWn ě vn, Wn`1 ă vnq “ `8.

Theorem 1 is due to Robbins and Siegmund (1970). A similar result had been previously

obtained by Barndorff-Nielson (1961) under the more restrictive requirement that cn is eventually

non-decreasing. Both papers employed the same method of proof used by Erdös (1942) in his

proof of the general form of the law of the iterated logarithm. As far as we know there is no other

simpler proof of this theorem. An attempt in this direction can be found in Stepanov (2014), but

we believe that the proof is based on a false assumption.

A sequence of events tAnu is said to be a Markov sequence if the sequence of Bernoulli random

variables tIAnu is a Markov chain. Stepanov (2014) proves the following result.

Lemma 1. Let tAnu be a Markov sequence such that P pAnq Ñ 0. Then

P pAn i.o.q “

$

’

&

’

%

0 if
ř`8

n“1 P
`

An X A
c
n`1

˘

ă `8

1 if
ř`8

n“1 P
`

An X A
c
n`1

˘

“ `8.

Then they use this result to justify the validity of Theorem 1. Their proof relies on the assumption

that the events An “ tWn ě vnu form a Markov sequence, which guarantees that for every n, k ě 1,

P pAcn`k|A
c
n`k´1 X ¨ ¨ ¨ X A

c
nq “ P pAcn`k|A

c
n`k´1q. (1)

However ItWněvnu is a function of Wn, and hence it is not necessarily a Markov chain even if Wn is;

we provide two examples.

Example 1. Let X be a discrete uniform random variable on S “ t1, 2, 3, 4u, tanu a non-increasing

sequence with values in S, and An “ tWn ě anu. Let a1 “ 4, a2 “ 3, a3 “ 2, for example, then

P pAc3|A
c
2 X A

c
1q “

P pAc3 X A
c
2 X A

c
1q

P pAc2 X A
c
1q

“
1´ P pA1 Y A2 Y A3q

1´ P pA2 Y A1q

“
1´

`

1
4
` 4

16
` 27

64
´ 2

16
´ 9

64
´ 12

64
` 6

64

˘

1´
`

1
4
` 4

16
´ 2

16

˘ “
7

10
,
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whereas

P pAc3|A
c
2q “

P pAc3 X A
c
2q

P pAc2q
“

1´ P pA2 Y A3q

1´ P pA2q

“
1´

`

4
16
` 27

64
´ 12

64

˘

1´ 4
16

“
11

16
.

Hence tAnu is not a Markov sequence.

Example 2. Let X be a uniform random variable on p0, 1q, tbnu a decreasing sequence of real numbers

with values on p0, 1q, and let Bn “ tWn ě bnu. For n “ 1, 2, 3,

P pBc
3|B

c
2 XB

c
1q “ P pBc

3|B
c
2q

ðñ P pBc
2qP pB

c
3 XB

c
2 XB

c
1q ´ P pB

c
1 XB

c
2qP pB

c
2 XB

c
3q “ 0.

We compute the two terms on the left hand side of the second equation, one at a time.

piq P pBc
2qP pB

c
3 XB

c
2 XB

c
1q “ r1´ P pB2qs r1´ P pA1 Y A2 Y A3qs

“

”

1´ p1´ b2q
2
ı ”

1´
´

p1´ b1q ` p1´ b2q
2
` p1´ b3q

3
´ p1´ b1qp1´ b2q

´p1´ b1qp1´ b3q
2
´ p1´ b2q

2
p1´ b3q ` p1´ b1qp1´ b2qp1´ b3q

¯ı

,

piiq P pBc
1 XB

c
2qP pB

c
2 XB

c
3q “

´

1´ P pB1 YB2q

¯´

1´ P pB2 YB3q

¯

“

”

1´
´

p1´ b1q ` p1´ b2q
2
´ p1´ b1qp1´ b2q

¯ı ”

1´
´

p1´ b2q
2

`p1´ b3q
3
´ p1´ b2q

2
p1´ b3q

¯ı

.

For convenience in (i) and (ii) we let b1 “ 3x, b2 “ 2x, and b3 “ x, and with these values after

simplification we obtain

P pBc
2qP pB

c
3 XB

c
2 XB

c
1q ´ P pB

c
1 XB

c
2qP pB

c
2 XB

c
3q

“ 2x3 ´ 8x4 ` 6x5 ı 0 in p0, 1{3q.
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Hence tBnu is not a Markov sequence.

Remark 1. The proof of Lemma 1 does not rely on the full assumption that tAnu is a Markov

sequence, but only on the validity of (1). Example 2 shows that the events tWn ě vnu do not satisfy

(1), and hence Theorem 1 does not follow from Stepanov’s version of the Borel-Cantelli lemma

applicable to Markov sequences.

In Section 2 we present our new proof of Theorem 1, and show how it can be applied indirectly

to sequences with lim sup bounded away from 1. In Section 3 we propose new extensions of the

Borel-Cantelli Lemma.

2. Alternative proof of Theorem 1

Before presenting our proof we make a few observations.

Remark 2. It follows from our calculations that the conclusion of Theorem 1 continues to hold if

the condition lim inf
cn

log2 n
ě 1 is replaced with the more general condition lim inf

cn
log2 n

ě δ ą 0.

Remark 3. The assumption that the Xi’s are uniform random variable on p0, 1q is not a limitation.

In fact Theorem 1 implies a law of iterated logarithm for arbitrary i.i.d. random variables with

a continuous distribution, see Remark 2.5 in Robbins and Siegmund (1970), and Chapter 4 of

Galambos (1970) for a thorough discussion of the general case.

It is important to mention that Theorem 1 can be applied indirectly to any sequence cn{n such

that lim sup
cn

log2 n
“ α ă 1, as a consequence of the following result.

Lemma 2. Let X1, X2, ¨ ¨ ¨ , Xn be independent and uniform random variables on p0, 1q, and let

Wn “ mintX1, ¨ ¨ ¨ , Xnu. Let un “ cn{n be a sequence of positive real numbers.

If lim sup
cn

log2 n
“ α ă 1, then

P pWn ě un i.o.q “ 1.

Next we turn to the proof of Theorem 1. Our proof is elementary and for the most part self

contained. The only additional result we need is the following inequality due to Feng and alt.
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(2009), which is a weighted version of a result of Erdös and Rényi, see Lemma C in Erdös and

Rényi (1959).

Lemma 3. Let Bn be any sequence of events in a probability space pΩ,A, P q, and twnu a sequence

of real numbers. If
`8
ÿ

k“1

wkP pBkq “ `8,

then for any positive integer s

P pBn i.o.q ě lim sup

´

řn
k“swkP pBkq

¯2

řn
k“s

řn
m“swk wm P pBk XBmq

.

Proof of Theorem 1. Let An “ tWn ě vn, Wn`1 ă vnu, Bn “ tWn ě vnu with P pBnq Ñ 0. We first

assume that
`8
ÿ

n“1

P pAnq “
`8
ÿ

n“1

vnp1´ vnq
n
ă 8.

Our next steps are similar to the ones used in N. Balakrishnan and A. Stepanov (2010), see also

T.K. Chandra (2012).

P
´

Bn i.o.
¯

ď P

˜

`8
ď

k“n

Bk

¸

“ lim
tÑ`8

P

˜

n`t
ď

k“n

Bk

¸

ď lim
tÑ`8

˜

P pBn`tq `

t´1
ÿ

j“0

P
´

Bn`j XB
c
n`j`1

¯

¸

“

`8
ÿ

k“n

P
´

Bk XB
c
k`1

¯

“

`8
ÿ

k“n

P
´

Ak

¯

.

Since the above inequality holds for every n, by letting nÑ `8 we get P
´

Bn i.o.
¯

“ 0.

Next we assume that
`8
ÿ

n“1

P pAnq “
`8
ÿ

n“1

vnp1´ vnq
n
“ `8. (2)

Under this assumption we can further assume that vn ď 2 log2pnq{n. In fact, suppose there exists

5
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a subsequence of tvnu, say tvnk
u, such that for every k ě 1, vnk

ą 2 log2pnkq{nk. Since

`8
ÿ

k“1

P

ˆ

Wnk
ě 2

log2pnkq

nk
, Wnk`1

ă 2
log2pnkq

nk

˙

ď

`8
ÿ

n“3

2
log2pnq

n

ˆ

1´ 2
log2pnq

n

˙n

ď

`8
ÿ

n“3

2
log2pnq

n

1

logpnq2
ă `8,

then from the first part of our proof we have P
´

Wnk
ě 2 log2pnkq

nk
i.o.

¯

“ 0. This combined with

P pWnk
ě vnk

i.o.q ď P

ˆ

Wnk
ě 2

log2pnkq

nk
i.o.

˙

imply P pWnk
ě vnk

i.o.q “ 0. Hence

P
´

Wn ě vn i.o
¯

“ P
´

Wn ě mintvn, 2 log2pnq{nu
¯

.

Since for this new sequence (2) continues to hold, we may assume, without loss of generality, that

1

2
log2pnq ď cn ď 2 log2pnq. (3)

By Lemma 3, with Bn as in the fist part of our proof and wn “ vn, we have that for every

positive integer s

P
´

Bn i.o.
¯

ě lim sup

´

řn
k“s vkp1´ vkq

k
¯2

řn
i“s v

2
i p1´ viq

i ` 2
řn
i“s

řn
j“i`1 vip1´ viq

i vjp1´ vjqj´i
. (4)

Let

Spnq “
n
ÿ

k“s

vkp1´ vkq
k.

We claim that the lower bound in (4) equals 1. Let β ě 3 be arbitrary but fixed. We decompose

6
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the double sum in the denominator of (4) into three parts,

n
ÿ

i“s

n
ÿ

j“i

p¨ ¨ ¨ q “

n
ÿ

i“s

tpiq
ÿ

j“i`1

p¨ ¨ ¨ q

loooooomoooooon

S1pnq

`

n
ÿ

i“s

rpiq
ÿ

j“tpiq`1

p¨ ¨ ¨ q

loooooooomoooooooon

S2pnq

`

n
ÿ

i“s

n
ÿ

j“rpiq`1

p¨ ¨ ¨ q

loooooooomoooooooon

S3pnq

, (5)

where tpiq “ 4i, and rpiq “ 4βi log2piq. Let s be the smallest positive integer such that if i ě s, the

following properties hold:

paq log2piq
i

§

đ

pbq i 2 log2prpiqq
rpiq

ă 1
β
.

(6)

Note that s is well defined. We analyze each of the the sums in (5) separately, starting with S1pnq.

S1pnq “

n
ÿ

i“s

vip1´ viq
i

4i
ÿ

j“i`1

vjp1´ vjq
j´i

ď

n
ÿ

i“s

vip1´ viq
i

4i
ÿ

j“i`1

2
log2pjq

j

´

1´
log2pjq

2j

¯j´i

ď

n
ÿ

i“s

vip1´ viq
i
`8
ÿ

j“0

2
log2piq

i

´

1´
log2p4iq

8i

¯j

ď 16
n
ÿ

i“s

vip1´ viq
i
“ 16Spnq.

We analyze S2pnq next.

S2pnq “

n
ÿ

i“s

vip1´ viq
i

rpiq
ÿ

j“4i`1

vjp1´ vjq
j´i

ď

n
ÿ

i“s

vip1´ viq
i

rpiq
ÿ

j“4i`1

2
log2p4iq

4i
pe´cjqpj´iq{j

ď

n
ÿ

i“s

vip1´ viq
i
”

rpiq 2
log2p4iq

4i

1

logp4iq1{4

ı

(7)

ď

n
ÿ

i“s

vip1´ viq
i
”

2β log2p4iq
2 1

logp4iq1{4

ı

(8)
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where in (7) we used the inequality pj´ iq{j ą 1{2 which holds for j ą 4i. Since the quantity inside

the square bracket in (8) goes to 0 as i goes to `8, there exists a constant c such that

S2pnq ď c Spnq.

It remains to analyze S3pnq,

S3pnq “
n
ÿ

i“s

vip1´ viq
i

n
ÿ

j“rpiq`1

vjp1´ vjq
j
p1´ vjq

´i.

Using

ivj ď i 2
log2pjq

j
ď i 2

log2prpiqq

rpiq
ă

1

β
,

we obtain

p1´ vjq
´i
“

`8
ÿ

k“0

ˆ

i` k ´ 1

k

˙

vkj ď
`8
ÿ

k“0

1

βk
“

β

β ´ 1
,

and therefore

S3pnq ď

n
ÿ

i“s

vip1´ viq
i

n
ÿ

j“rpiq`1

vjp1´ vjq
j β

β ´ 1

ď
β

β ´ 1

Spnq2

2
.

Using the bounds we derived for Sipnq, i “ 1, 2, 3 we obtain

P
´

Wn ě vn i.o.
¯

ě lim sup
Spnq2

p1` 32` 2cqSpnq ` β
β´1

Spnq2
“
β ´ 1

β
.

Since β was arbitrary, and β{pβ ´ 1q Ñ 1 as β goes to `8, the above calculations imply

P
´

Wn ě vn i.o.
¯

“ 1.

The proof of the theorem is now complete.
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Remark 4. It follows from the first part of the proof of Theorem 1 that if a sequence of events, say

tEnu, is such that P pEnq Ñ 0 and

`8
ÿ

n“1

P
´

En X E
c
n`1

¯

ă `8,

then P pEn i.o.q “ 0.This result is due to Barndorff-Nielson (1961).

Proof of Lemma 2. Let un “ cn{n, and suppose

lim sup
cn

log2 n
“ α ă 1.

Let an “
log2pnq
n

, and Cn “ tWn ě anu.

`8
ÿ

n“1

P pCn X C
c
n`1q ď

`8
ÿ

n“1

log2pnq

n

1

logpnq
“ `8,

and by Theorem 1, P
´

Cn i.o.
¯

“ 1. For all n sufficiently large Cn Ă tWn ě unu, and thus,

P
´

Wn ě un i.o.
¯

ě P
´

Cn i.o.
¯

“ 1.

3. A generalization of Lemma 1

In Lemma 1, the assumption that tAnu is a Markov sequence is only needed if
ř`8

n“1 P pAn X

Acn`1q “ `8, see Remark 4. When this holds the assumption P pAnq Ñ 0 is not needed. Further-

more, as we pointed out in Remark 1, one can relax the requirement that tAnu is a Markov sequence

and simply require that (1) holds. We propose the following generalization of Lemma 1.

We confine ourselves to the non-trivial case lim supP pAnq ă 1, because if lim supP pAnq “ 1,

then P pAn i.o.q “ 1 immediately follows, see beginning of proof of Lemma 4 for details, regardless

of whether
ř

P pAn X A
c
n`1q converges or diverges.
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Lemma 4. Let tAnu be a sequence of events, and suppose that lim supP pAnq “ a ă 1. If

`8
ÿ

n“1

P
`

An X A
c
n`1

˘

ă `8, (9)

then

P pAn i.o.q “ a. (10)

Moreover if there exists a positive integer N such that for n ě N and k ě 1,

P pAcn`k |A
c
n`k´1 X ¨ ¨ ¨ X A

c
nq ď P pAcn`k |A

c
n`k´1q, (11)

then

P pAn i.o.q “ 1 if and only if
`8
ÿ

n“1

P
`

An X A
c
n`1

˘

“ `8. (12)

Note that the first part of Lemma 4 generalizes the result of Barndorff-Nielson (1961) mentioned

in Lemma 4. If tAnu is an increasing sequence of events then (11) trivially holds, and the second

part generalizes a result of F.T. Bruss (1980).

Proof. Let tAnu be a sequence of events and suppose lim supP pAnq “ a ă 1. Let ttnu Ă tnu, tn ą n,

and P pAtnq Ñ a. Then

P pAn i.o.q “ limP

˜

`8
ď

k“n

Ak

¸

ě limP pAtnq “ a. (13)

Next we suppose that (9) holds. By proceeding as in the first part of the proof of Theorem 1, we

skip few details here, we obtain

P pAn i.o.q ď lim sup
tÑ`8

˜

P pAn`tq `
t´1
ÿ

j“0

P
´

An`j X A
c
n`j`1

¯

¸

P pAn i.o.q ď a`
`8
ÿ

k“n

P
´

Ak X A
c
k`1

¯

. (14)

10
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Since (14) holds for every n, by letting nÑ `8 we immediately have

P pAn i.o.q ď a. (15)

Thus P pAn i.o.q “ a.

Next we turn to the proof of (12). Since (15) proves the sufficiency part, to complete the proof

it suffices to consider the case that (11) holds and that

`8
ÿ

n“1

P
`

An X A
c
n`1

˘

“ `8.

Since for arbitrary t ą 1,

t
ÿ

n“1

P
`

An X A
c
n`1

˘

“

t
ÿ

n“1

”

1´ P pAcn Y An`1q
ı

“

t
ÿ

n“1

”

1´
´

1´ P pAnq ` P pAn`1q ´ P pA
c
n X An`1q

¯ı

“ P pA1q `

t
ÿ

n“1

P pAcn X An`1q ´ P pAt`1q,

we also have that
`8
ÿ

n“1

P pAcn X An`1q “ `8.

Let n ě N . Then

1´ P pAn Y An`1 Y ¨ ¨ ¨ Y An`kq “ P pAcn X A
c
n`1 X ¨ ¨ ¨ X A

c
n`kq (16)

“ P pAcnqP pA
c
n`1|A

c
nqP pA

c
n`2|A

c
n`1 X A

c
nq ¨ ¨ ¨P pA

c
n`k|A

c
n`k´1 X ¨ ¨ ¨ X A

c
nq

ď P pAcnqP pA
c
n`1|A

c
nqP pA

c
n`2|A

c
n`1q ¨ ¨ ¨P pA

c
n`k|A

c
n`k´1q (17)

“ elogP pA
c
nq`

řk
j“1 logP pA

c
n`j |A

c
n`j´1q “ elogP pA

c
nq`

řk
j“1 logp1´P pAn`j |A

c
n`j´1qq

ď elogP pA
c
nq´

řk
j“1 P pAn`j |A

c
n`j´1q ď elogP pA

c
nq´

řk
j“1 P pAn`jXA

c
n`j´1q, (18)

where (17) follows from (11), and (18) follows from the elementary inequalities logp1 ´ xq ď ´x,

11
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0 ă x ă 1, and ´P pAn`j|Acn`j´1q ď ´P pAn`j X Acn`j´1q. Next we let k Ñ `8 in (16) and (18),

and obtain that for every n ě N ,

1´ P
´

`8
ď

i“n

Ai

¯

ď 0,

which further implies that

P pAn i.o.q “ limP
´

`8
ď

i“n

Ai

¯

“ 1.

The proof of the lemma is now complete.
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